Bypass to Turbulence in Hydrodynamic Accretion: Lagrangian Analysis of Energy Growth
نویسندگان
چکیده
Despite observational evidence for cold neutral astrophysical accretion disks, the viscous process which may drive the accretion in such systems is not yet understood. While molecular viscosity is too small to explain the observed accretion efficiencies by more than ten orders of magnitude, the absence of any linear instability in Keplerian accretion flows is often used to rule out the possibility of turbulent viscosity. Recently, the fact that some fine tuned disturbances of any inviscid shear flow can reach arbitrarily large transient growth has been proposed as an alternative route to turbulence in these systems. We present an analytic study of this process for 3D plane wave disturbances of a general rotating shear flow in Lagrangian coordinates, and demonstrate that large transient growth is the generic feature of non-axisymmetric disturbances with near radial leading wave vectors. The maximum energy growth is slower than quadratic, but faster than linear in time. The fastest growth occurs for two dimensional perturbations, and is only limited by viscosity, and ultimately by the disk vertical thickness. After including viscosity and vertical structure, we find that, as a function of the Reynolds number, R, the maximum energy growth is approximately 0.4(R/ logR), and put forth a heuristic argument for why R & 10 is required to sustain turbulence in Keplerian disks. Therefore, assuming that there exists a non-linear feedback process to replenish the seeds for transient growth, astrophysical accretion disks must be well within the turbulent regime. However, large 3D numerical simulations running for many orbital times, and/or with fine tuned initial conditions, are required to confirm Keplerian hydrodynamic turbulence on the computer. Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, MS-51, 60 Garden Street, Cambridge, MA 02138 [email protected] [email protected] [email protected]
منابع مشابه
2DV Nonlinear k-ε Turbulence Modeling of Stratified Flows
The commonly used linear k-ε turbulence model is shown to be incapable of accurate prediction of turbulent flows, where non-isotropy is dominant. Two examples of non-isotropic flows, which have a wide range of applications in marine waters, are saline water flow and the stratified flows due to temperature gradients. These relate to stratification and consequently, variation of density through...
متن کاملHydrodynamic Turbulence in Accretion Disks
Turbulent viscosity in cold accretion disks is likely to be hydrodynamic in origin. We investigate the growth of hydrodynamic perturbations in a small region of a disk, which we model as a linear shear flow with Coriolis force, between two parallel walls. Although there are no exponentially growing eigenmodes in this system, because of the non-normal nature of the modes, it is possible to have ...
متن کاملBypass to Turbulence in Hydrodynamic Accretion Disks: An Eigenvalue Analysis
Cold accretion disks such as those in star-forming systems, quiescent cataclysmic variables, and some active galactic nuclei, are expected to have neutral gas which does not couple well to magnetic fields. The turbulent viscosity in such disks must be hydrodynamic in origin, not magnetohydrodynamic. We investigate the growth of hydrodynamic perturbations in a linear shear flow sandwiched betwee...
متن کاملHydrodynamic stability and mode coupling in Keplerian flows: local strato-rotational analysis
Aims. We present a qualitative analysis of key (but yet unappreciated) linear phenomena in stratified hydrodynamic Keplerian flows: (i) the occurrence of a vortex mode, as a consequence of strato-rotational balance, with its transient dynamics; (ii) the generation of spiral-density waves (also called inertia-gravity or gΩ waves) by the vortex mode through linear mode coupling in shear flows. Me...
متن کاملBypass to Turbulence in Hydrodynamic Accretion Disks: An Eigenvalue Approach
Cold accretion disks with temperatures below ∼ 3000K are likely to be composed of highly neutral gas. The magnetorotational instability may cease to operate in such disks, so it is of interest to consider purely hydrodynamic mechanisms of generating turbulence and angular momentum transport. With this motivation, we investigate the growth of hydrodynamic perturbations in a linear shear flow san...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005